Application of an electronic Frailty Index in Australian primary care: data quality and feasibility assessment

Background
The primary care setting is the ideal location for identifying the condition of frailty in older adults.

Aims
The aim of this pragmatic study was twofold: (1) to identify data items to extract the data required for an electronic Frailty Index (eFI) from electronic health records (EHRs); and (2) test the ability of an eFI to accurately and feasibly identify frailty in older adults.

Methods
In a rural South Australian primary care clinic, we derived an eFI from routinely collected EHRs using methodology described by Clegg et al. We assessed feasibility and accuracy of the eFI, including complexities in data extraction. The reference standard for comparison was Fried’s frailty phenotype.

Results
The mean (SD) age of participants was 80.2 (4.8) years, with 36 (60.0%) female (n = 60). Frailty prevalence was 21.7% by Fried’s frailty phenotype, and 35.0% by eFI (scores > 0.21). When deriving the eFI, 85% of EHRs were perceived as easy or neutral difficulty to extract the required data from. Complexities in data extraction were present in EHRs of patients with multiple health problems and/or where the majority of data items were located other than on the patient’s summary problem list.

Discussion
This study demonstrated that it is entirely feasible to extract an eFI from routinely collected Australian primary care data. We have outlined a process for extracting an eFI from EHRs without needing to modify existing infrastructure. Results from this study can inform the development of automated eFIs, including which data items to best access data from.